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1 Introduction 
As the field of functional genetics and genomics is be-
ginning to mature, we become confronted with new 
challenges. The constant drop in price for sequencing 
and gene expression profiling as well as the increasing 
number of genetic and genomic variables that can be 
measured makes it feasible to address more complex 
questions. The success with rare diseases caused by 
single loci or genes has provided us with a proof-of-
concept that new therapies can be developed based on 
functional genomics and genetics. 
Common diseases, however, typically involve genetic 
epistasis, genomic pathways, and proteomic pattern. 
Moreover, to better understand the underlying biologi-
cal systems, we often need to integrate information 
from several of these sources. Thus, as the field of 
clinical research moves toward complex diseases, the 
demand for modern data base systems and advanced 
statistical methods increases. At the same time, as with 
many emerging fields, better understanding of the un-
derlying concepts allows for similarities with other, 
more established fields to be revealed and, thus, some 
of the techniques developed earlier to be revisited. 
As biological systems are often controlled by a variety 
of regulatory feedback loops, many of which may be 
unknown, the assumption that the functional form of 
the relationship between a measurement and activity or 
efficacy is known may not be valid, except, at best, 
within very narrowly controlled experimental settings. 
Since twenty years ago (Wittkowski 1980), new non-
parametric methods have been developed to avoid 
artifacts created by using methods based on unrealistic 
assumptions. New bioinformatics tools now help to 
make these methods more widely available. The earlier 
work introduced the marginal likelihood principle 
(MrgL) as a technique to extend rank tests to partially 
ordered univariate data, in general, and missing data, 
in particular (Wittkowski 1980; 1984; 1988b; 1988e). 
From extensive consulting experience, it soon was re-
alized that few biological systems can be sufficiently 
characterized by a single variable only. In 1992, rank 

tests for censored data were generalized to multivari-
ate ordinal observations (Wittkowski 1992a). While 
this approach proved eminently useful (Einsele, Eh-
ninger 1995; Susser, Desvarieux 1998; Talaat, 
Wittkowski 1998; Wittkowski, Susser 1998), the com-
putational effort that comes with the MrgL principle 
was prohibitive. Only after drawing on the analogy of 
the Mann-Whitney (u statistics) and the Wilcoxon test 
(MrgL), a more computationally efficient approach 
became available, this time based on u-statistics 
(Hoeffding 1948) and a computational strategy that 
had been earlier devised in Tübingen (Deuchler 1914), 
see, e.g., (King, Jim 2003) 

Recently, we have begun to extend this approach by 
allowing for more complex designs in genetics 
(Wittkowski, Liu 2002; Wittkowski, Liu 2004) and 
more problem-specific partial orderings (Wittkowski 
2003). The first Web tools based on these results are 
now available (muStat.rockefeller.edu). For small data 
sets, spreadsheets can be downloaded, for larger data 
sets, we are moving parallelized computational ser-
vices from a cluster to a grid. 

As the complexity of experimental designs and the 
choice of statistical methods increases, so does the 
need for data management and decision support. The 
PANOS system (Wittkowski 1985) provided for the 
first data model and a knowledge representation 
concept able to support the choice of both parametric 
and non-parametric methods. A subset of these results 
can be seen in JMP (SAS Institute Inc. 2002). More 
recently, we developed a similar data model for topo-
logical (genetics) and functional relations (genomics) 
between variables (SNPs and genes, respectively) to 
be represented. 

As with many knowledge based systems, knowledge 
acquisition remained a bottleneck. Drawing upon 
modern rapid prototyping systems, we have now be-
gun to implement a Web based tool for acquisition of 
knowledge on the biological background and the ex-
perimental design (WISDOM). 



Knut M. Wittkowski 

2 

2 U Statistics for Changes in Function 
Complex diseases are typically characterized by sev-
eral variables. In Phase I/II studies, were surrogate ac-
tivity variables need to be considered in lieu of clinical 
outcomes, it is especially unlikely that a single vari-
able can be found to be sufficient. With traditional lin-
ear weight scoring systems, one transforms each vari-
able individually (linear, logarithmic, categorization) 
to obtain a score on a comparable scale (present / ab-
sent, low / intermediate / high, 1 to 10, z-score) and then 
defines a global score as the linear combination 
(weighted average) of these individual scores. 
Relying on the linear model has advantages. First, al-
gorithms are computationally efficient. Mean and stan-
dard deviation, for instance, are easily computed with 
a pocket calculator, while quartiles, the analogues 
based on u statistics, are not. Second, the assumption 
of independent, additive main effects and interactions 
coerces fitted models whose alluring simplicity often 
turns out to be an artifact of the linear model not easily 
allowing for more complex, non-linear relations. Fi-
nally, the assumption of independent additive errors 
yields the convenient bell shaped distribution of errors. 
The prayer that biology be linear, independent, and 
additive, however, is rarely answered and the central 
limit theorem does not provide for a rescue from 
model misspecification. In particular, the relative im-
portance of the variables, and, thus the weight they 
need to be assigned, is typically not known a-priori.  
Since relative importance, correlation, and functional 
relationship between variables are typically unknown, 
construct validity (Cronbach, Meehl 1955) cannot be 
established on theoretical grounds. Instead, researchers 
often resort to empirical ‘validation’, choosing weights 
and functions that provide a reasonable fit with a ‘gold 
standard’ when applied to a sample. While this allows 
for a comparison between studies where researchers 
agreed on the same scoring system, comparability 
along a scale with questionable validity may still yield 
questionable results. The diversity of scoring systems 
used attests to their subjective nature. 
Recently, we have utilized multivariate u statistics to 
overcome these obstacles, providing the first approach 
generating clinical scores that are ‘intrinsically valid’, 
i.e., that do not need to rely on empirical validation, a 
process of questionable validity by itself (Popper 
1937). While this approach proved eminently useful, 
we soon realized that further work was needed, be-
cause additional information about relationships be-
tween the variables often needs to be reflected. 

Within the linear model, multivariate data can be re-
duced to a score by applying a simple transformation 
such as the average, difference, or ratio. In other cases, 
one estimates a more complex parameter, like the 
slope of a regression line or a maximum likelihood es-
timate. If one does not feel comfortable with the as-
sumptions of linearity and independence underlying 
the linear model u statistics can provide solutions for 
closely related questions. For univariate data, the Wil-
coxon-Mann-Whitney u test (Mann, Whitney 1947; 
Wilcoxon 1954), for instance, corresponds to the Stu-
dent t-test (Student 1908). The question then arises, 
how to extend u statistics to reflect known relations 
between variables. Interestingly, one of the first appli-
cation of multivariate u statistics, the u-test for (inter-
val) censored data (Gehan 1965a; 1965b; Schemper 
1983) can be seen as a u-test for bivariate data, if one 
replaces the natural partial ordering (Wittkowski, Lee 
2004, Eq. 1) by a specific ordering, where intervals are 
ordered, if they are disjoint (non-overlapping). 

Difference

Ratio >

< Difference

Ratio >

<
 

Fig. 1: Changes (indicated by vertical arrows) that can be ordered 
for differences and ratios. Changes to the left or right of the refer-
ence (center, bold) are smaller or larger, respectively, than the ref-
erence. By the partial ordering for intervals, in contrast, only the 
three arrows to the left are higher than the three arrows to the right. 

We have recently developed additional partial order-
ings (see, e.g., Fig. 1). To some extent, differences 
(e.g., changes over time), are the ‘opposite’ of inter-
vals, in that they can be unambiguously ordered only if 
one ‘interval’ is fully contained in the other, rather 
than disjoint. Obtaining pair wise orderings of ratios 
(e.g., changes in concentration) can be obtained under 
the same conditions, but ratios can also be ordered if 
the change at the lower level (distance from zero) is at 
least as large as the change at the higher level. 

To better reflect specific problems in genetics and 
genomics, we will develop more partial orderings, 
thereby making multivariate u-statistics more 
widely applicable. 
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3 U Statistics for Microarrays 

3.1 Quality Control 

U statistics have various applications in functional ge-
nomics. At a low level, quality of data scanned from a 
microarray (Fig. 2a) can be affected by a plethora of 
potential confounders, which may act during printing, 
manufacturing, hybridization, washing, and reading. 
Given the high probe-to-probe variance and their ran-
dom allocation on the chip, it is impossible to visually 
detect all but the starkest artifacts. 

As the price for chips drops, a typical experiment now 
contains several chips, each representing a sample ob-
tained under conditions that were similar except for 
the experimental factor under investigation. This offers 
new strategies for testing the effect of the experimental 
factor, e.g., through ‘robust multiarray analysis’ 
(Irizarry, Hobbs 2003). As probes differ in affinity 
(Naef, Magnasco 2003; Wu, Irizarry 2004), their cor-
relation can also be used to identify small blemishes. 

Fig. 2b exhibits a variety of such blemishes. The shad-
owy circle on the left side, e.g., is clearly an artifact, as 
are the bright spot in the upper-right corner, and the 
dark spot in the upper center (Fig. 3). These examples 
are based on U95 chips with 16 probe pairs per probe 
set. On U133 chips, with only 11 pairs per set, the ef-
fect of artifacts on results is expected to increase. 

The choice of the arithmetic mean (average) as the 
measure of central tendency in linear models relies ei-
ther on the law of large numbers and the central limit 
theorem or on the assumption that the distribution of 
errors at least symmetrical. Here, neither assumption is 
easily justified. Fig. 4 demonstrates that median filter-
ing, based on u-statistics, causes less ‘ghosting’ than 
average filtering, based on the linear model. 

A tool to detect blemishes automatically (Fig. 3c) is 
available at asterion.rockefeller.edu/Harshlight. While 
the first version (Suárez-Fariñas, Haider 2005) was 
based on traditional pattern recognition methods, with 
several parameters to be chosen, we are now working 
on replacing this linear model approach, too, by a non-
parametric approach based on u-statistics. 

Having substantially improved quality control of 
high density oligonucleotide arrays, we will fine-
tune the pattern recognition process, to reduce the 
number of parameters, increase sensitivity for spe-
cific types of blemishes, and to allow for more com-
plex, factorial designs. 

 

 

 
Fig. 2: Top (a): upper 50% pseudo-image of a HuU95av2 chip. 
Bottom (b): median filtered image (3 chips). (c) HarshLight mask 

 
Fig. 3: Left (a): Raw image file detail of the ‘dark spot’ artifact 
seen in the center of Fig. 2. Right (b): Raw image file detail of the 
the ‘bright spot’ in the top right corner of Fig. 2.  
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Fig. 4: The artifact of Fig. 3b. Top: raw image from the same area 
of two chips showing gene expression from the same sample under 
two experimental conditions. Center: average filtering, bottom: 
median filtering.  
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3.2 Signal Value Estimation 
To estimate the non-specific portion of the binding on 
an Affymetrix GeneChip®, each ‘perfect match’ (PM) 
is paired with a ‘mis-match’ (MM), with the middle 
nucleotide exchanged for its WATSON-CRICK comple-
ment. When estimating the signal value for a particular 
gene from a probe set of pairs of perfect and mis-
matches, several parametric and semi-parametric (‘ro-
bust’) methods have been proposed.  
To allow for a linear model to be based on the loga-
rithms of the differences, it has been suggested 
(Hubbell, Liu 2002) to artificially decrease MMx  of 
probe pairs where PM MMx x<  to a heuristically moti-
vated level that ensures that PM MMx x−  is positive. As a 
justification for this ‘background correction’, it is ar-
gued that a mismatch should never be higher than a 
perfect match. For genes that are not expressed in the 
biological sample, however, one would expect 50% of 
the pairs to have higher mis- than perfect matches. 
Then, this ‘correction’ creates a bias, because esti-
mates for genes with expression level zero have signal 
value estimates as high as genes with low, but positive 
expression levels, the level of this estimate depending, 
in part, on the within-probe variance. 
Above, the need for various partial orderings has been 
stressed. When using u statistics, this bias can easily 
be overcome by employing the following partial order-
ing for signal value estimation: 

{ } ( ) ( ){ },PM ,PM ,MM ,MMk k k k k kx x x x x x′ ′ ′< ⇔ < ∧ − < −  

Within each probe set, one then selects the pair with a 
score of zero as the most ‘typical’, or, if necessary, the 
weighted average among those closest to zero (Fig. 5). 
As this guarantees ‘outliers’ to be excluded, the al-
leged need for taking logarithms has been overcome. 
Requesting that this estimate be non-negative results in 
a much smaller bias than decreasing xk,MM for each pair 
where ,PM ,MMk kx x<  (Haider, Naef 2003). 

Fig. 5 shows a spreadsheet implementation of u statis-
tics for probe sets. Fig. 6 and Fig. 7 depict the bias for 
a chip from the study mentioned earlier and for the 
‘spike-in’ data set (Irizarry, Hobbs 2003), respectively. 

Again, more steps lie ahead. Even after reducing the 
effect of blemishes, the large differences in affinity 
between PM probes can render the order of many 
probe pairs ambiguous. Drawing on the sequence 
information (Naef, Magnasco 2003), in addition to 
eliminating blemishes, should further improve the 
reliability of signal value estimates. 
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Fig. 5: Signal value estimation with u-statistics. The u scores for 
probe pairs closest to the median are displayed in white. 
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Fig. 6: MAS 5.0 bias for genes with low expression levels. Probes 
with u statistic signal value estimates �0 are scattered around 10-2 
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Fig. 7: MAS 4.0, MAS 5.0, and U-statistics – bias vs. variance sta-
bilization, log2 transformed axes. 
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3.3 Gene expression profiling 
Once a signal value estimate has been obtained for 
each gene, u statistics for gene expression profiles are 
conceptually not different from u-statistics for clinical 
response profiles, although the computational com-
plexity is higher, because neither the subset of relevant 
genes nor their ‘orientation’ is known a-priori. In one 
of our first applications (Wittkowski, Lee 2004), we 
started with scoring clinical response (disease severity) 
based on several outcomes. As is typical for assessing 
phenotypes, both the set of variables and their orienta-
tion was known. For each outcome (epidermal thick-
ness, K16 histology), it was reasonable to assume that 
‘more’ was ‘worse’ (more inflammation). In the sec-
ond step, we then looked for the set of genes most 
closely related to the effect of the drug given on the 
phenotype score. As is typical for screeing in func-
tional genomics neither the set of genes involved, nor 
their orientation (sign of the correlation with the phe-
notype) was known. 
The foundation of a solution sufficiently efficient for 
genomic screening was laid in 1989 (Wittkowski 
1989), when the need for distinguishing between ‘ex-
act ties’ (complete ordering) and ‘inexact ties’ (partial 
ordering) was identified. By applying the distinction 
between the conditional and the unconditional vari-
ance (Wittkowski 1988b) to this special case of a 
stratified rank test, it was demonstrated that both ver-
sions of the sign test (Dixon, Mood 1946; Dixon, 
Massey 1951) were valid, albeit for different situa-
tions, thereby resolving the long-felt discomfort with 
the treatment of ties in the McNemar test (McNemar 
1947) when applied to rounded data. These results 
have subsequently been independently confirmed 
(Rayner, Best 1999; Randles 2001; Fong, Kwan 2003) 
see also (Wittkowski 2004). 
Recently, we have made several major advantages in 
computational efficiency. First, as mentioned above, 
we moved from the marginal likelihood (MrgL) to u-
statistics. While the computational effort of generating 
all rank permutations rises with the factorial of the 
sample size (n!), the computational effort for u-
statistics rises only with the square of the sample size 
(n2). This computational simplicity allowed us to in-
crease the number of subjects that could be scored to 
32 while using a spreadsheet as the first implementa-
tion and a didactical tool (see, e.g., Fig. 5). While the 
spreadsheet was highly appreciated for visualizing the 
algorithm underlying u-statistics, manual screening 
among all possible polarized subsets is impractical. 

To overcome these limitations, the next implementa-
tion of the method was written in S-Plus (Insightful 
Corp.). While S-Plus provides for a convenient envi-
ronment to implement statistical methods at a high 
level, some operations, notably ‘for loops’, cannot be 
represented efficiently. Thus, we developed a library of 
C subroutines to increase the computational efficiency, 
while keeping higher level tasks in S-Plus to allow for 
easy adaptation to various experimental designs and 
partial orderings. With these optimizations, the ap-
proach became sufficiently efficient for a limited 
number of variables. The software has recently con-
tributed to gaining new insights into the genetic and 
genomic determinants of atherosclerosis (Dansky, Ono 
2001; Smith, James 2003), cancer susceptibility 
(Banchereau, Palucka 2001; Palucka, Dhodapkar 
2003), allergology (King, Jim 2003), psoriasis (Lowes, 
Lin 2004), and addiction (Spangler, Wittkowski 2004). 

While this provided for a proof-of-principle, we soon 
realized that a single processor system would not be 
sufficient to fulfill the growing demands of our inves-
tigators. To increase the throughput, we parallelized 
the software and then sought collaboration from the 
RU Information Technology department to run the sof-
tware on a multiprocessor cluster. To make this tool 
more widely available, we then provided access 
through a Web server (mustat.rockefeller.edu).  

Moving from a desktop to a multiprocessor cluster 
demonstrated the scalability of the problem, but the 
feedback from our clinical investigators immediately 
indicated the need for further increases in computa-
tional efficiency. As the next step, we have begun to 
migrate from the 8-processor cluster to a �100-
processor grid. 

Not all analytical tasks are equally easy to distribute 
across a grid. In some cases, it may turn out that for 
several task to share intermediate results may pro-
vide a computational advantage, so that it would be 
preferable to run certain tasks on a cluster of proc-
essors having joint local access to the same data. 
We will then separate these tasks from those being 
distributed throughout the grid and have them 
routed to the cluster. 
 

Finally, we anticipate that a multiprocessor architec-
ture may be not optimal for all tasks, but that some 
task would benefit from dedicating specific hard-
ware. For such tasks, we are currently exploring the 
possibility to equip dedicated servers with field 
programmable gate arrays (FPGA).  
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4 U Statistics in Genetics 
Associations between genetic risk factors and clini-
cally relevant phenotypes were first sought by means 
of simple �2 statistics comparing allele prevalence be-
tween cases and controls. To better deal with con-
founding through population admixture, an analytic 
approach was suggested, termed ‘transmission disequi-
librium test’ (TDT) (Spielman, McGinnis 1993) that 
would allow to correct for confounding by obtaining 
the genotypes from cases and their parents, rather than 
from cases and controls. Over 10 years, this landmark 
paper has been cited more than 1500 times, making the 
TDT one of the most frequently used analytic ap-
proach in the field of genetics. Still, the TDT was 
never presented with the formal rigor that had evolved 
in the field of statistics, although it was thought to be a 
sign test (Dixon, Massey 1951) or McNemar (1947) 
test for data with exact ties (Wittkowski 1998; 
Wittkowski 2004). Instead, the TDT was heuristically 
motivated using genetic terminology, which led to the 
belief that independence of transmission events (genet-
ics) implied independence of the observations (statis-
tics). In 2002 (Wittkowski, Liu), we separated the sta-
tistical theory from the genetic application, thereby 
demonstrating that children should be stratified ac-
cording to the parental mating type using standard sta-
tistical methodology for stratified non-parametric tests 
(Wittkowski 1988b). The resulting stratified McNemar 
(SMN) test proved to be superior to the TDT in many 
ways and the discussion shed light on the heuristics 
underlying the TDT (Wittkowski, Liu 2004). 
In particular, the new insight into the nature of this ap-
proach now allows for generalizing the family of TDT-
like tests. For instance, the power of the TDT and, al-
beit to a lesser extend, of the SMN, is unsatisfactory 
for alleles with either both low prevalence (frequency) 
and low dominance ( r(aA) � r(aa) ) or with both high 
prevalence and high dominance ( r(aA) � r(AA) ) 
(Goddard, Wittkowski 2003). 

To further improve statistical tests for association 
based on trios, we will compare different variants of 
the SMN through simulation studies to find tests 
with either uniformly higher power across different 
levels of dominance or, alternatively, with power 
characteristics optimized to detect alleles with either 
low or high dominance. Then, we will extend the 
methodology from binary to ordinal outcomes (as in 
the qTDT) and then, as a direct consequence, to 
multivariate ordinal outcomes (as a novel “uTDT”). 

As yet another direction for development, our investi-
gators requested a more flexible tool, where informa-
tion from neighboring marker loci is integrated to 
identify a disease locus. For inbred populations, all 
possible diplotypes coincide with the haplotypes, so 
that ‘marker intervals’ can be easily ordered (Fig. 8a). 
For outbred populations, however, the partial ordering 
can be more complicated (Fig. 8b). The need for a spe-
cial partial ordering arises from the specific meaning 
of the term ‘interval’ in this context. 
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Fig. 8: Partial orderings of genetic evidence for an interval be-
tween two markers to contain a disease gene G, left: inbred strains, 
right: outbread strains. Nodes within boxes are comparable only 
with nodes connected through a dashed line or through the lines 
connecting the box, but not among each other. 

In one of our first applications (Sehayek, Yu 2004), 
this new approach let to identifying synteny of a hu-
man locus with a ‘high plant sterol allele’ on chromo-
some 20 to the mouse locus Plast2b on distal chromo-
some 2 (Sehayek, Duncan 2002). As the number of 
SNPs available for analysis increases, several adjacent 
SNPs may be in linkage disequilibrium with a diseases 
locus. Moreover, a phenotype may be associated with 
an ‘epistatic set’ of diplotypes being several markers 
apart, or even on different chromosomes (Gambis, Se-
hayek 2003). Zwei weitere aktuelle Anwendungsgebi-
ete sind die Identifikation genetischer Faktoren bei ol-
faktorischen Störungen (Leslie Voshall) und bei poly-
cystic kidney diseases (Rogosin Institute). 

From our experience, the next steps are (a) to ex-
tend the partial ordering for marker intervals to a 
partial ordering for diplotypes consisting of more 
than two neighboring SNPs and (b) to extend the 
default partial ordering of epistatic SNPs to one that 
allows for epistatic diplotypes. 
As u statistics can easily integrate SNP and gene 
expression data in a single analysis, the above ex-
tensions will allow complex interactions between 
genetic and functional genomic to be addressed.  
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5 Data Models 
A suitable data model is crucial for the ease by which 
biostatistics and bioinformatics tools can interact with 
users and among themselves. Making a tool for the 
analysis of complex designs available for a large group 
of users using different data base and analysis systems 
while having limited knowledge in statistics and/or in-
formatics requires data models that are rich enough to 
represent necessary information, yet simple enough to 
be easily communicated. 
For small data sets and simple statistical methods, it is 
often sufficient to store data in a single table, e.g., as a 
spreadsheet. In functional genomics, however, data is 
frequently associated to different objects. Some vari-
ables (e.g., SNPs) are measured once per subject, 
while others (e.g., gene expression) are measured re-
peatedly, under different conditions. Storing data in a 
universal relation (single table), is convenient for data 
retrieval and inspection, but repeating genetic informa-
tion for every gene expression profile poses problems 
for statistical analyses (Wittkowski 1988d), as the 
number of genetic observations could be seen a in-
flated by the number of genomic conditions. Of 
course, this dilemma could be avoided by requiring 
data to be transmitted in third normal form (3NF), 
where redundancy is avoided (Codd 1970). This, how-
ever, would require that the user decomposes the fa-
miliar universal relation into a set of 3NF relations, the 
number of such relations depending on the particular 
study design. Still, not all relevant design characteris-
tics are easily represented in the relational data model. 
To guide the selection of appropriate statistical meth-
ods, for instance, it is important to distinguish com-
pletely randomized designs, where the first patient in 
group A bears no similarity to the first patient in group 
B, from a matched pair design, where the first patient 
in group A is the sibling of the first patient in group B. 
The increasing volume of data and the diversity of sta-
tistical methods create new challenges in data manage-
ment. As part of the ‘PArametric and NOnparametric 
Statistics’ (PANOS) project (Wittkowski 1985), a data 
model was presented that allowed for data to be repre-
sented in the familiar form of a universal relation, 
while includingthe first representation of meta data 
(‘knowledge’) sufficient to guarantee semantically 
meaningful statistical analyses. This knowledge was 
then structured into different layers, among them the 
DESIGN and MODEL layers (Elliman, Wittkowski 
1987; Wittkowski 1987; 1992b; 1993). The former 
specifies the data structure, i.e., the logical relation be-

tween different observations, the latter describes the 
variables’ known characteristics, that are relevant for 
choosing statistical methods, in general, and statistical 
graphics (Wittkowski 1983), in particular: scale level 
(nominal < ordinal < interval < absolute), accuracy (ex-
act, rounded), granularity (2 … �), and causality (stra-
tum < intervention < observation). 

When we developed the current server for ‘multivari-
ate u Statistics’ (muStat.rockefeller.edu), we faced a 
different problem. The PANOS data model had fo-
cused on multifactorial designs with univariate obser-
vations. The muStat data model, in contrast, was ini-
tially restricted to elementary statistical methods: 
product moment correlation (ordinal phenotype), 2-
sample t-test (binary phenotype). With the focus on 
multivariate data in genetics and genomics, the model 
incorporates two additional features. First, the location 
of the SNPs is formally described to allow the statisti-
cal methods to build upon our understanding of the 
correlation between adjacent loci (linkage). Second, as 
it is often not known whether a particular allele and 
gene increases or decreases risk, the polarity of a vari-
able could be declared as unknown (‘0’), in addition to 
‘1’ or ‘-1’. For genetic information, one might want to 
separate chromosomes further into exons or even 
genes. For genomic (or proteomic) information, one 
might want to group genes into known functional path-
ways. 
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� � � 	
 � � �OBJ  A AB C AB AB AB AB AB AB ABC ABC ABC ABC ABC 
�� �N   2 10 4 10 10 10 10 10 10 40 40 40 40 40 
� � �� �� � � � �� Chr Nom    1 1 1 2     
� � �� � �� � �Pos Ord   1 2 3 1  

   

  
� ��� � �� �� � �Pwy Nom        1 2 3   
� �Pht Nom          1 2 
� � � � � � �SCL   Nom Nom Abs Ord Ord Ord Ord Nom Abs Ord Ord Ord Abs Abs 
�� �Pol   - - 0 0 0 0 1 - 1 0 1 1 0 0 
� � � � � �DAT  A MICKEY 10.0 1 2 0 0 M 74 245 172 2.3 172 2.32 
� �DAT  A MICKEY 20.0 1 2 0 0 M 74 74 190 2.6 190 2.57 
� �DAT  A MICKEY 50.0 1 2 0 0 M 74 354 195 2.6 195 2.64 
� �DAT  A MICKEY 100.0 1 2 0 0 M 74 5 180 2.4 180 2.43 
� �DAT  A MINNIE 10.0 0 0 0 0 F 76 22 156 2.1 156 2.05  

Fig. 9: Draft proposal for a unification of the PANOS and the 
muStat data model. The rows in the block ‘hierarchical variable 
structure’ provide information necessary to generate a 3NF relation 
by adding additional keys/factors and ‘stacking’ variables.  

To overcome the deficiencies of traditional data 
models when representing relevant relationships be-
tween variables, we propose to define a ‘factorial’ 
structure not only for the subjects, but also for the 
variables. This structure should be hierarchical, to 
allow for step-by-step refinement of topological 
structures (chromosome, intron, gene, SNP) or logi-
cal structures (ontology group, pathway, gene). 
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6 Knowledge Acquisition 
The PANOS system (Wittkowski 1985) focused on 
how best to choose statistical methods, but shared a 
feature of many previous ‘knowledge based’ systems: 
It did not yet include a sufficiently user-friendly 
(DESIGN) knowledge acquisition module. Thus, when 
the results were commercialized by SAS, Inc. in 1989 
as JMP, only a small portion of DESIGN knowledge 
was incorporated. 
As new technologies become available we are now 
working on a prototype of a graphical user interface, 
where clinical trials, genetic studies, or gene expres-
sion experiments can be described interactively in suf-
ficient detail to extract DESIGN knowledge. Fig. 10 
shows an example based on one of our ongoing studies 
on cardiovascular and metabolic diseases (with the RU 
Laboratory of Biochemical Genetics and Metabolism). 

 
Fig. 10: Screen shot from the Web-based Interactive Study De-
sign, Operation, & Management (WISDOM) module: Patients are 
first randomized to two diets (low carb vs low fat) and then, within 
each diet to two hormones (leptin vs placebo). During Visit_4, 
Heart function is evaluated in a factorial design. 

Allowing for information on genetic epistasis, geno-
mic pathways, and proteomic profiles to be combined 
for statistical analysis requires even more meta data to 
be added to data models (see Section 5. Data Model). 
The analysis system needs to be able to differentiate 
between different partial orderings (see Section 2. U 
Statistics for Changes in Function), to employ appro-
priate screening strategies (see Section 3.3. U Statistics 
for Microarrays: Gene expression profiling), to con-
sider topological and functional relations between 
variables (see Section 4, U Statistics in Genetics). 
Having a sufficiently rich formal description of ex-
perimental designs available has a number of advan-
tages, each of which typically draws on a different 
view of the knowledge base. In particular, the 
DESIGN knowledge base can be used to facilitate 
database creation, by automatically setting up a (rela-

tional or object-attribute-value) database, 
sample size calculations, by allowing to simulate 

power for complex designs, 
protocol writing, e.g., by generating pre-populated 

protocol templates for NIH’s ProtoType system, 
security, by facilitating the use of centralized servers, 

thereby reducing the need for decentralized stor-
age, e.g., as spreadsheets on various PCs, 

study management, by generating “pathways” pro-
viding nurses with workflow information, 

data entry, by generating case report forms, either on 
paper or as Web interfaces, 

monitoring, by allowing software to automatically 
screen for adverse event profiles and alerting data 
and safety monitoring boards based on preset cri-
teria, if necessary, 

inspection, by giving investigators real-time informa-
tion while automatically protecting them from be-
coming accidentally unblinded, 

review, by providing the Institutional Review Board 
with progress information. 

analysis, by storing primary and secondary objectives 
and automatically initiating the appropriate analy-
ses according the protocol, 

data sharing, by providing standardized dictionaries, 
allowing data to be related across studies. 

Thus, to facilitate use of the new statistical methods 
and analytical tools in genetics, functional genom-
ics, and proteomics, we will continue to work with 
investigators, computer scientists, and statisticians 
on integrating knowledge acquisition modules and 
knowledge based analysis tools. 
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7 Summary 
The traditional statistical methods implemented in 
most of the bioinformatics tools currently used in the 
novel field of genetics and functional genomics are 
based on the linear model and, thus, have shortcom-
ings when applied to nonlinear biological systems. The 
previous work on partially ordered data (Wittkowski 
1988b; 1992a), when combined with theoretical results 
(Hoeffding 1948) and computational strategies 
(Deuchler 1914) has opened a new field of nonpara-
metric statistics. With grid technology, new tools are 
now feasible when screening for interactions between 
genetics (Wittkowski, Liu 2002) and functional ge-
nomics (Wittkowski, Lee 2004). We will continue the 
ongoing collaborative efforts in broadening the spec-
trum of partial orderings to meet the demands of more 
complex study designs and to make these bioinformat-
ics / biostatistics tools available over the Web. 
Having more complex study designs and more specific 
methods available increases the demand for decision 
support when selecting appropriate bioinformatics 
tools. With the advent of rapid prototyping systems for 
Web based database application, we have recently be-
gun to complement my previous work on knowledge 
based systems (Wittkowski 1985; 1988c; 1988a; 1991; 
1993) with graphical Web-based tools for acquisition 
of DESIGN and MODEL knowledge. To make the 
biostatistics tools more widely available and more eas-
ily accessible, we will continue to improving data base 
design and knowledge acquisition tools for clinical tri-
als, in general, and for functional genomics and genet-
ics, in particular. 
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